背景と目的
- 血圧は健康状態を知るうえで重要な指標
- カフ型の装置(図はKM-370 II)を腕周りにつけて計測するのは大変

- 最近はスマートウォッチで脈波が計測できる
- 脈波は血圧と関係がある
- 脈波から血圧を推定するモデルを機械学習/深層学習技術で構築してみよう
- 高時間分解能かつ自宅で血圧がわかるようになる
- 自宅環境だとデータがノイジーになりそうなので状態認識してノイズが激しそうなら後処理で何とかしましょう

Introduction and Objective
- Blood pressure (BP) is an important indicator of health status
- Cumbersome to measure BP with a cuff-type device (e.g., KM-370 II) surrounding the forearm

- Recently smartwatches can measure PPGs by near-infrared light
- There is a correlation between BPs and PPGs
- Let's build a model to estimate BPs from PPGs using machine learning/deep learning techniques
- High temporal resolution and the ability to monitor BPs at home
- Data is likely to be noisy in the home environment, so recognise the state and do something about it in post-processing if the noise is too intense
担当研究者
発表文献 (Publications)
お問い合わせ (Contact)
Untitled
Untitled